固体颗粒性质对二氧化碳富液解吸促进作用的影响Effect of solid particle property on carbon dioxide desorption enhancement from rich liquids
刘健,陈宝康,顾振宇,王乐乐,何川,雷嗣远,王思源,杨宇航,张庆文,朱磊,朱松鹤,陆晓林
摘要(Abstract):
为探讨固体颗粒在促进富液CO_2解吸过程中的强化传质传热作用和催化作用的主导地位及作用机制,选取纳米二氧化钛(TiO_2)和分子筛(HZSM-5)作为代表性颗粒,分别代表具有强化传热传质作用和化学催化作用的2种典型颗粒。通过搭建连续搅拌反应器,定义添加颗粒和未添加颗粒条件下富液CO_2解吸速率之比为解吸增强因子,系统调节颗粒质量分数、颗粒粒径、搅拌转速、富液CO_2负载量和吸收剂种类等因素,研究TiO_2和HZSM-5颗粒对富液解吸CO_2强化作用的影响。结果表明:HZSM-5颗粒相比TiO_2具有更高的解吸增强因子,主要归因于HZSM-5颗粒具有更大微孔表面积和Br?nsted酸位点耦合参数,且Ti O_2的解吸增强因子受操作条件变化的影响较小,在1.00~1.20范围内波动;相比之下,提高颗粒的质量分数和富液CO_2负载均能显著提升HZSM-5的解吸强化效果,解吸增强因子最高可达2.25;通过拟合富液中HCO_3~-浓度与HZSM-5解吸增强因子的关系,发现两者呈线性相关,表明HZSM-5颗粒通过强化与HCO_3~-相关的反应路径从而促进CO_2的解吸过程,这一发现为进一步优化固体颗粒的设计和提升富液CO_2解吸效率提供了理论依据。
关键词(KeyWords): CO_2解吸;TiO_2;HZSM-5;解吸增强因子;HCO_3~-
基金项目(Foundation): 西安热工研究院有限公司发展基金项目(GU-24-TYK16);; 国家重点研发计划项目(2023YFB410400)~~
作者(Author): 刘健,陈宝康,顾振宇,王乐乐,何川,雷嗣远,王思源,杨宇航,张庆文,朱磊,朱松鹤,陆晓林
DOI: 10.19666/j.rlfd.202412269
参考文献(References):
- [1] ZHANG W F, XU Y L, DENG Z X, et al. Experiments on continuous chemical desorption of CO2-rich solutions[J]. Energy, 2022, 239:122354-122362.
- [2] RAO A B, RUBIN E S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control[J].Environmental Science&Technology, 2002, 36:4467-4475.
- [3] WANG T, YU W, FANG M X, et al. Wetted-wall column study on CO2 absorption kinetics enhancement by additive of nanoparticles[J]. Greenhouse Gases Science and Technology, 2015, 5:682-694.
- [4]贾萌川,张忠孝,江砚池,等.纳米颗粒强化TETA溶液富液解吸CO2的实验研究[J].化学工程, 2019,47(10):37-41.JIA Mengchuan, ZHANG Zhongxiao, JIANG Yanchi,et al. Desorption of CO2 performance enhancement by nanoparticles in TETA rich solution[J]. Chemical Engineering, 2019, 47(10):37-41.
- [5] LEE J, LEE J, KANG Y. CO2 regeneration performance enhancement by nanoabsorbents for energy conversion application[J]. Applied Thermal Engineering, 2016, 103:980-988.
- [6] BHATTI U, SHAH A, KIM J, et al. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process[J]. ACS Sustainable Chemistry&Engineering, 2017, 5:5862-5868.
- [7] SHI H C, NAAMI A, IDEM R, et al. Catalytic and non-catalytic solvent regeneration during absorptionbased CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26:39-50.
- [8] ZHANG X W, ZHU Z Q, SUN X Y, et al. Reducing energy penalty of CO2 capture using Fe promoted SO42-/ZrO2/MCM-41 catalyst[J]. Environmental Science&Technology, 2019, 53(10):6094-6102.
- [9]张晓文.固体酸—碱复合催化剂用于催化富二氧化碳单乙醇胺溶液再生性能的研究[D].长沙:湖南大学,2020:1.ZHANG Xiaowen. Study of the carbon dioxide(CO2)desorption performance in CO2-loaded aqueous monoethanolamine solution using solid acid-based catalyst[D]. Changsha:Hunan University, 2020:1.
- [10] BHATTI A, WARIS M, KAZMI W, et al. Acid-treated activated carbon as simple and inexpensive catalyst to accelerate CO2 desorption from aqueous amine solution[J]. Carbon Capture Science&Technology,2023, 8:100131-100140.
- [11] BHATTI U, NAM S, PARK S, et al. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration[J]. ACS Sustainable Chemistry&Engineering, 2018, 6:12079-12087.
- [12] BHATTI U, SIVANESAN D, NAM S, et al. Efficient Ag2O-Ag2CO3 catalytic cycle and its role in minimizing the energy requirement of amine solvent regeneration for CO2 capture[J]. ACS Sustainable Chemistry&Engineering, 2019, 7:10234-10240.
- [13] BHATTI U, SIVANESAN D, LIM D, et al. Metal oxide catalyst-aided solvent regeneration:a promising method to economize post-combustion CO2 capture process[J].Journal of the Taiwan Institute of Chemical Engineers,2018, 93:150-157.
- [14] JIANG Y C, ZHANG Z X, FAN J J, et al. Experimental study on comprehensive carbon capture performance of TETA-based nanofluids with surfactants[J]. International Journal of Greenhouse Gas Control, 2019, 88:311-320.
- [15] LEI X, LI M, LI M Y, et al. MOF-derived robust and synergetic acid sites inducing C-N bond disruption for energy-efficient CO2 desorption[J]. Environmental Science&Technology, 2022, 56:17936-17945.
- [16]于伟.纳米颗粒强化的二氧化碳吸收剂及新型再生工艺研究[D].杭州:浙江大学, 2019:1.YU Wei. Post-combustion CO2 capture using liquid nano-absorbents and novel solvent regeneration process[D]. Hangzhou:Zhejiang University, 2019:1.
- [17] ZHANG Y, ZHAO B, JIANG J Z, et al. The use of TiO2nanoparticles to enhance CO2 absorption[J]. International Journal of Greenhouse Gas Control, 2016, 50:49-56.
- [18]傅坤. CO2在EHA+diglyme均相贫水系统中的吸收-解吸特性及机理研究[D].北京:华北电力大学, 2022:1.FU Kun. Absorption-desorption performance and mechanism of CO2 in EHA+Diglyme Homogeneous water-lean absorbent[D]. Beijing:North China Electric Power University, 2022:1.
- [19] LIANG Z W, IDEM R, PAITOON T, et al. Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts[J].AIChE Journal, 2016, 62:753-765.
- [20] LIU H L, ZHANG X, GAO H X, et al. Investigation of CO2 Regeneration in single and blended amine solvents with and without catalyst[J]. Industrial&Engineering Chemistry Research, 2017, 56:7656-7664.
- [21] BAIRQ Z, GAO H X, HUANG Y F, et al. Enhancing CO2 desorption performance in rich MEA solution by addition of SO42-/ZrO2/SiO2 bifunctional catalyst[J].Applied Energy, 2019, 252:113440-113452.
- [22] ZHANG X W, ZHANG S S, TAN Z, et al. One-step synthesis of efficient manganese-based oxide catalyst for ultra-rapid CO2 absorption in MDEA solutions[J].Chemical Engineering Journal, 2023, 465:142878-142889.
- [23] HU X Q, YU Q, CUI Y Y, et al. Toward solvent development for industrial CO2 capture by optimizing the catalyst-amine formulation for lower energy consumption in the solvent regeneration process[J].Energy&Fuels, 2019, 33:11507-11515.
- [24] LI L J, LIU Y Y, WU K J, et al. Catalytic solvent regeneration of a CO2-loaded MEA solution using an acidic catalyst from industrial rough meta titanic acid[J].Greenhouse Gases-Science and Technology, 2020, 10:449-460.
- [25] LIU J, KONG C D, Jiang Y C, et al. Evaluating CO2desorption performance of MEA solution with MnOx/HZ catalytic packings by visualization method[J]. Chemical Engineering Journal, 2024, 479:147650-147662.
- [26] GAO H X, HUANG Y F, ZHANG X W, et al. Catalytic performance and mechanism of SO42-/ZrO2/SBA-15catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020,259:114179-114190.
- [27] TAN Z, ZHANG S S, YUE X W, et al. Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture[J]. Separation and Purification Technology, 2022, 298:121577-121586.
- [28] ZHANG R, LI Y F, ZHANG Y M, et al. Energy-saving effect of low-cost and environmentally friendly sepiolite as an efficient catalyst carrier for CO2 capture[J]. ACS Sustainable Chemistry&Engineering, 2023, 11:4353-4363.
- [29]张瑞.有机胺溶剂化学结构与二氧化碳吸收-解吸性能构效关系的探究[D].长沙:湖南大学, 2018:1.ZHANG Rui. Study of the relationship between the amine molecular structure and the carbon dioxide(CO2)absorption-desorption performance[D]. Changsha:Hunan University, 2018:1.